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Summary. Three new approximations are suggested for 
the standardized selection intensity, i. Two are simple 
functions of  powers of  b, the fraction selected. These 
improve on previous approximations by covering a 
broader range of  selection intensities. A third approxi- 
mation is developed using a rational polynomial. This 
gave accurate approximation,  but simplicity was lost. 

Key words: Computer  approximation - Rational poly- 
nomials. 

Introduction 

As a standardized measure of  expected selection pres- 
sure, selection intensity, i, plays an important role in 
quantitative genetics. Typically, a certain fraction (b) 
o f  the population is to be selected, and from this 
value i must be calculated. Tables for this task are 
available (Falconer 1965, Becker 1984), but as pointed 
out by Simmonds (1977), use o f  tables is not always 
feasible. Assuming a normal and infinite population, 
selection intensity can be calculated as 

i = exp ( -  z2/2)/(b 2~). 
Here z is used to represent the point on the standard 
normal curve above (assuming positive selection) which 
a fraction b of  the population lies, and can be looked up 
in tables. I f  tables are to be avoided, inverse normal 
computer algorithms can be used (such as Beasley and 
Springer 1977), which compute z for a given b. 

* Approved for publication by the Director of the Louisiana 
Agricultural Experiment Station as manuscript no. 87-19-10038. 

Several researchers have expressed a need for a 
simple approximation for i. The approximation of  
Smith (1969) (Table 1) was felt to be too limited in 
range by Simmonds (1977), who suggested two more 
functions for the cases of  very low and very high selec- 
tion intensity. The purpose of  this paper is to suggest 
single functions that cover the same range of  selection 
intensities. An approximate correction for finite or 
non-normal populations is given by Burrows (1972). 

Methods 

Due to the pronounced non-linearity of the intensity function 
(Fig. 1), a power transformation of b was used. By trial and 
error, raising b to the 0.2 power was found to result in near 
linearity. Figure 1 shows that slight curvature remains at ex- 
treme selection intensities. A search for accurate approxima- 
tions was then made, examining various functions of powers 
ofb. 

Rational polynomials are widely used to approximate 
functions. An excellent discussion and examples are given in 
Moshier (1986). Basically, the idea is to approximate i with a 
ratio of two polynomials in b ~ for example 

no + nz b ~ + n2b ~ + n3 b~ 

do+ dlb ~ + d2 b~ 

Methods discussed by Moshier (1986) were used to compute 
numerator (nj) and denominator (d j) constants that approxi- 
mate i. 

Evaluation of functions (Table 1) was done by comparing 
"exact" and approximate i at values of b between 10 -5 and 
0.01 in multiplicative steps of 10 ~ from 0.01 to 0.99 in ad- 
ditive steps of 0.01, and the values 0.999, 0.9999 and 1.0. At 
each point, absolute and percentage errors were calculated. 

Results and discussion 

Three functions were developed, ranging from a rela- 
tively inaccurate simple regression to an accurate but 
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Table 1. Comparison of maximum percentage error (corresponding absolute error in parentheses) 
among various approximations for i; since i = 0 for b = 1, percentage error is not given for this case 

Range in b Function 

A B C D E F 

10 -5 - 10 -4 - 7 (0.29) - 9 (0.40) 11 (0.47) 
10 -4 - 0.004 - 3 (0.08) - 4 (0.11) 5 (0.20) 
0.006 - 0.1 3 (0.06) 5 (0.09) - 4 (0.11) 4 (0.09) 
0.11 - 0.19 3 (0.05) - - 2 (0.03) 2 (0.03) 
0.20 - 0.75 17 (0.07) - 5 (0.04) 8 (0.06) 2 (0.02) 
0.76 - 0.90 - - 13 (0.03) 35 (0.07) 1 (0.003) 
1.00 - - (0.002) (0.17) (0.006) 

0.5 (0.02) 
0.5 (0.02) 
0.6 (0.01) 
0.4 (0.005) 
0.5 (0.002) 
0.5 (0.002) 

(0.003) 

A Smith (1969) 
B Simmonds (1977) 
C Simmonds (1977) 
D 
E 

F 

0.8 + 0.41 In (1/b - 1) 
1.132 + 0.729 log ( l /b)  
1.672 - 1.670 b 
4.5122 - 4.3382 b ~ 
4.4206 - 4.1683 b ~ - 0.246 b 5 

2.97425 - 3.35197 b ~ - 1.9319 b ~ + 2.3097 b 0'6 

0.51953 + 0.88768 b ~ - 2.38388 b 0"4 + b ~ 
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Fig. 1. The effect of power transformation on the relationship 
between b and i 

complex  ra t ional  po lynomia l .  The  two s imple  funct ions  
proposed  here (D and  E in  Tab le  1) are s imi lar  in ac- 
curacy to previous  app rox ima t ions  and  have the ad-  
vantage  of  cover ing a wide  range  of  select ion in ten-  
sities. By add ing  in  the fifth power  of  b, accuracy of  
the a p p r o x i m a t i o n  was i m p r o v e d  greatly for low selec- 
t ion  intensit ies.  

The  ra t ional  p o l y n o m i a l  is g iven to show the com- 
plexity r equ i red  to ob t a in  an  a p p r o x i m a t i o n  with con- 
sistently h igh accuracy.  A n  advan tage  of  ra t ional  poly-  
nomia l s  is that  n u m e r a t o r  and  d e n o m i n a t o r  constants  
can be easily m a n i p u l a t e d  to yield equal  percentage 
error th roughou t  the range of  interest ,  as was done  
here, or  could  be changed  to give h igher  accuracy for 
par t icu lar  select ion intensit ies.  In contrast ,  a four ier  
series a p p r o x i m a t i o n  (not  shown),  us ing six terms in- 
volv ing  sines and  cosines o f  b ~ gave high accuracy as 

measured  by the sum of  squared  devia t ions  f rom a 
least squares fit. But the percentage error could no t  be  
controlled,  and  was as high as 5% for cer ta in  b. Since 
the n u m b e r  of  terms requ i red  by  the four ier  series was 
s imilar  to the ra t ional  po lynomia l ,  this approach  was 
not  pursued.  

The  ra t ional  po lynomia l  given in  Tab le  1 m a y  be 
too complex for occasional  use, bu t  could  be used as 
the basis for a compu te r  a lgori thm.  In  fact, the al- 
gor i thm of  Beasley and Spr inger  (1977) m e n t i o n e d  
above is based on a ra t ional  po lynomia l .  However ,  i f  a 
compute r  is used, the lat ter  a lgor i thm which gives 
"exact" results should be considered.  The  ra t ional  
po lynomia l  could be m a d e  more  accurate  by  add ing  
terms to the n u m e r a t o r  and  denomina to r .  S i m m o n d s  
(1977) argues that  ext reme accuracy is no t  needed  in  
practice, as the accuracy of  her i tabi l i ty  est imates and  
other  parameters  of  genet ic  interest  will genera l ly  be 
the l imi t ing  factor in compu t ing  genet ic  gain,  the m a i n  
use of  i. 
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